2x^2+10x=52/105

Simple and best practice solution for 2x^2+10x=52/105 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+10x=52/105 equation:



2x^2+10x=52/105
We move all terms to the left:
2x^2+10x-(52/105)=0
We add all the numbers together, and all the variables
2x^2+10x-(+52/105)=0
We get rid of parentheses
2x^2+10x-52/105=0
We multiply all the terms by the denominator
2x^2*105+10x*105-52=0
Wy multiply elements
210x^2+1050x-52=0
a = 210; b = 1050; c = -52;
Δ = b2-4ac
Δ = 10502-4·210·(-52)
Δ = 1146180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1146180}=\sqrt{4*286545}=\sqrt{4}*\sqrt{286545}=2\sqrt{286545}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1050)-2\sqrt{286545}}{2*210}=\frac{-1050-2\sqrt{286545}}{420} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1050)+2\sqrt{286545}}{2*210}=\frac{-1050+2\sqrt{286545}}{420} $

See similar equations:

| 20×-12y=-180 | | 81g2+0+63=0 | | 81g2+54+9=0 | | Y+0.4y=58 | | (D^4+8D^2+16)y=3 | | 10x+2x=2x+5 | | 10k+4=k+13 | | 6y+10=3y+4 | | 4x+13=-23-3x | | 3|x−6|−19=2 | | 310=x9 | | 5x-5=241/3 | | (-2,-4)m=-2.5 | | y+0.2=42 | | -2=v-5-3 | | 6(6y-3)+16=4(2y+1)+12 | | 2x-14=7x+2 | | 7k+3=k+18 | | x+4=−2 | | 6(2x+3)=15(3x-6) | | 0.6x-0.2x(x-4)=0.4(x-2) | | 10x+33·(11x+60)=0 | | x+3=−8 | | 5d=12/5 | | 6(6y−3)+16=4(2y+1)+126(6y-3)+16=4(2y+1)+12 | | 2x²-24x+144=0 | | 6(1y+4)=-3 | | 4.9t^2+3t-14=0 | | 22/3x=600 | | 7x-10=9x+15 | | 4x-3=3x=7 | | 0.79+0.31t=1.57t-0.05 |

Equations solver categories